Welcome to PEEEB

Tutorial 2: Power Switches
Presenter: Dr. Firuz Zare

www.peeeb.com
Q1: Determine the switching and conduction losses of a power switch whose voltage and current waveforms are as below:

$t_{on}=1 \mu s$, $t_{off}=1 \mu s$, $I_{on}=0$, $V_{on}=2$ V, $V_{off}=500$ V, $I_{off}=10$ A

$$P_{on} = \frac{5000 \times 1}{2} \times 10^{-6} = 25 \text{ mW}$$

$$P_{con} = \frac{V_{on} \times I_{on} \times (100 - 50)}{100} = \frac{98 \times 10^{-3}}{100} = 9.8 \text{ mW}$$

$$P_{tot} = P_{on} + P_{con} = 25 + 9.8 = 34.8 \text{ mW}$$

**Presenter:** Dr. Firuz Zare

**www.peeb.com**
\[ P_{\text{off}} = P_{\text{on}} = 2.5 \text{ watts} \]
\[ P_S = P_{\text{off}} + P_{\text{on}} = 2.5 + 2.5 = 5 \text{ watts} \]
\[ P_{\text{cond}} = 9.8 \text{ watts} \]
\[ P_{\text{loss}} = 59.8 \text{ watts} \]
Q2: In the following circuit, the thyristor has a latching current level of 50mA and to turn on it, a pulse voltage is applied to a gate terminal of the switch. What is a minimum pulse width for the gate signal to keep the switch in the on state when we remove the gate signal. Neglect the thyristor voltage drop and no delay in switching. 
\[ V_{in} = 200\, \text{V} \pm 10\% \]
\[ L = 1\, \text{mH} \pm 5\% \]
\[ 180 = V_i \times \frac{1}{L} \times \frac{\Delta i}{\Delta t} = 1.05 \times 10^{-3} \times \frac{\Delta i}{\Delta t} \]

\[ \Delta t = \frac{1.05 \times 10^{-3}}{180} \times \Delta i \]

\[ \Delta t = \frac{1.05 \times 10^{-3}}{180} \times 50 \times 10^{-6} = \frac{1.05 \times 50 \times 10^{-6}}{180} \]

\[ \Delta t = \frac{5.25}{18} \times 10^{-6} \]

Pulse width > \( \frac{5.25}{18} \) ms

For a gate signal

Presenter: Dr. Firuz Zare

www.peeeb.com